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                            Privileged scaffolds targeting 
reverse-turn and helix 
recognition 
      Ye   Che    &    Garland R   Marshall      †   
 Washington University, Center for Computational Biology and Department of Biochemistry and 
Molecular Biophysics, St. Louis, MO 63110, USA   

   Background : Protein–protein interactions dominate molecular recognition in 
biologic systems. One major challenge for drug discovery arises from the very 
large surfaces that are characteristic of many protein–protein interactions. 
 Objectives : To identify ‘drug-like’ small molecule leads capable of modulating 
protein–protein interactions based on common protein-recognition motifs, 
such as  α -helices,  β -strands, reverse-turns and polyproline motifs for example. 
 Overview : Many proteins/peptides are unstructured under physiologic 
conditions and only fold into ordered structures on binding to their cellular 
targets. Therefore, preorganization of an inhibitor into its protein-bound 
conformation reduces the entropy of binding and enhances the relative 
affinity of the inhibitor. Accordingly, this review describes a general 
strategy to address the challenge based on the ‘privileged structure 
hypothesis’ [Che, PhD thesis, Washington University, 2003] that chemical 
templates capable of mimicking surfaces of protein-recognition motifs are 
potential privileged scaffolds as small-molecule inhibitors of protein–protein 
interactions. The authors highlight recent advances in the design of 
privileged scaffolds targeting reverse-turn and helical recognition. 
 Conclusions : Privileged scaffolds targeting common protein-recognition 
motifs are useful to help elucidate the receptor-bound conformation and to 
provide non-peptidic, bioavailable substructures suitable for optimization 
to modulate protein–protein interactions.  
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    1.   Introduction 

 Protein–protein interactions are central to many key biologic pathways and, thus, 
are attractive targets for drug discovery     [1-6] . However, developing small molecules 
that modulate protein–protein interactions is generally considered difficult. The 
challenge with protein–protein interaction sites, is that the interaction surface 
involved is between 750 – 1500  Å  2 , vastly exceeding the potential binding area 
of a low molecular weight compound. At first glance, trying to modulate an 
interaction of this type with a typical ‘rule of five’-compliant small molecule     [7]  
appears incredibly difficult to many people at first glance. Thus, protein–protein 
interactions have become known as ‘hard targets’ and have often been 
dismissed in the past as ‘undruggable’. The key question in this field was 
whether any systematic approaches for inhibiting protein–protein interactions 
could be developed. 

 Recent studies of protein interactions involved in cell regulation and signaling 
have identified a large number in which one component involves a flexible or 
unstructured region of the polypeptide chain under physiologic condition that 
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folds into ordered structures only on binding to their cellular 
targets     [8-16] . In addition, database analysis indicated that 
there was a high abundance of intrinsic disorder in signaling 
proteins, as well as in proteins associated with cancer, 
neurodegenerative diseases and cardiovascular diseases     [17,18] . 
Coupled folding and binding often gives to a protein 
complex with high specificity and relatively low affinity, 
which is appropriate for signal transduction proteins that 
must not only associate specifically to initiate the signaling 
process, but must also be capable of dissociation when 
signaling is complete. Nature optimizes rates and system 
dynamics rather that affinities  per se . Another advantage of a 
system that uses components that fold on binding is that 
the conformational flexibility facilitates the post-translational 
modifications of proteins     [19,20] . Conformational flexibility 
allows a protein to bind to both its physiologic target and 
to modifying enzymes. It has been shown that regions 
undergoing disorder-to-order transitions during interaction 
with binding partners are very common in signaling proteins 
and the concept of molecular recognition features was pro-
posed to account for these regions     [21] . The thermodynamic 
consequence is that there is an entropic cost associated with 
the disorder-to-order transition that accompanies the binding 
of an intrinsically unstructured protein to its target. It is 
estimated (see Mammen  et al.      [22]  for a thorough discussion 
of torsional entropy) that elimination of a single rotational 
degree of freedom of a peptide by preorganization to 
stabilize the receptor-bound conformation enhances affinity 
by  ∼  1.2 – 1.6 kcal/mole assuming complete (unlikely at 
physiologic temperatures) loss of rotational degrees of 
freedom     [23] . Thus, preorganization of an inhibitor into its 
protein-bound conformation should reduce the entropy of 
binding and potentially enhance the binding affinity by 
orders of magnitude. Therefore, it has been proposed 
that intrinsically disordered proteins represents a novel 
type of drug targets and protein–protein interactions 
involving one disordered partner are, perhaps, more 
drugable sites of interaction that can be used to fill drug 
discovery pipelines     [1,6,24] . 

 In fact, the recognition of peptide hormones by their 
receptors can be viewed as a special case of protein–protein 
interactions involving one unstructured partner. It has been 
a topic of interest ever since du Vigneaud and co-workers     [25]  
first explored the chemical basis of specificity of the non-
apeptide hormones oxytocin and vasopressin. While peptides 
have wide therapeutic application, they are often limited 
because of undesirable absorption, distribution, metabolism 
and excretion properties, undesired side effects due to 
undesirable interactions of conformationally flexible peptides 
with non-targeted receptors     [26] . This has led to the concept 
of peptidomimetics, compounds which have different, and 
often conformationally constrained, chemical structures that 
still maintain the ability to interact with a specific peptide 
receptor     [27] . Often, peptidomimetics arise from chemically 
significant modifications of existing peptides or by the use 

of rigid non-peptidic scaffolds with only limited flexibility, 
in order to imitate the three-dimensional structure of a 
peptide in its receptor-bound conformation as closely as 
possible. This reduction in the decrease of freedom may 
eventually lead to receptor binding with high affinity because 
of entropic reasons, provided that the receptor binding is 
not compromised in the modified peptide. One example 
was the design of a series of cyclic, conformationally 
restricted analogs of somatostatin, an inhibitor of hormone 
receptors. One of the potent analogs, a cyclic octapeptide, 
exhibited high affinity (the potency is 7800 times 
somatostatin) and selectivity for µ-opiate receptor     [28] . 
Octreotide, a cyclic peptide analog of somatostatin, has been 
approved for the treatment of acromegaly and of patients 
with metastasizing carcinoid and vasoactive tumors     [29] . 

 From the authors’ perspective, the best place to look for 
small molecules that interfere with protein–protein inter-
actions are peptidomimetics; chemical scaffolds that mimic 
the most common protein recognition motifs. By suitable 
decorating such chemical scaffolds, they are able to provide 
ligands for multiple, unrelated classes of protein targets with 
high affinity. Therefore, these chemical scaffolds can be 
viewed as privileged structures     [30]  that provide the medicinal 
chemist with common, non-peptidic, orally available sub-
structures as suitable starting points in combinatorial 
synthesis. Common protein recognition motifs comprise 
repetitive structures, such as  α -helix or  β -sheet and non-
repetitive structures, such as a reverse-turn or loop. This 
review highlights recent advances in the design of privileged 
scaffolds targeting reverse-turn and helical recognition.  

  2.   Reverse-turn recognition and mimicry 

 A reverse-turn is a structural motif that invariably lies on the 
surface of proteins that often participates in protein–protein 
interactions     [31] . Receptor recognition, substrate specificity 
and catalytic function generally reside in these loop 
regions, which often connect residues of adjacent  α -helices 
and  β -strands, contributing to the structural stability of 
proteins. Reverse-turns comprise a diverse group of 
structures with a well-defined three-dimensional orientation 
of amino acid side chains.  β -Turns constitute the most 
important subgroup and are formed by four consecutive 
amino acids. Examples of turns as recognition motifs 
can be readily found in peptide antigen–antibody 
complexes     [32] . Structure–activity relationship studies of 
many peptide hormones interacting with G-protein-coupled 
receptors (GPCRs) have indicated that the hormones 
are probably in reverse-turn conformations when bound to 
their receptors     [33,34] . 

  2.1   Non-peptidyl reverse-turn mimetics 
 It is desirable to have a repertoire of scaffolds that reliably 
transform the information present in reverse-turn motifs, 
seen in proteins, into non-peptidyl compounds of low 
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molecular weight. The desired reverse-turn conformation 
should be imitated as closely as possible and the synthetic 
route for the non-peptidyl mimetic should permit the 
introduction of appropriate side chains onto the mimetic 
scaffold. Thus, the mode of action of a biologically active 
peptides on the protein target can be imitated by the small 
molecule (agonist) or can be blocked (antagonist). Today, 
such compounds – that combine bioavailability and stability 
superior to that of bioactive peptides with increased 
receptor selectivity – are the subject of major interest by 
pharmaceutical companies. 

 Examples of privileged structures used to mimic 
reverse-turn motifs include, for instance, the benzodiazepine 
( Figure 1  ( 1 )) scaffolds     [30,35,36] . The benzodiazepine ring is a 
core element of a natural product, asperlicin, which was 
discovered during a screening of fungal metabolites and was 
found to be a cholecystokinin A (involved in the control of 
appetite) antagonist     [37] . Asperlicin was combined with a 
D-Trp structural motif, culminating in the synthesis of a 
selective orally administered peptidomimetic antagonist of the 
peptide hormone cholecystokinin     [38] . The benzodiazepine 
derivatives continue to generate leads against multiple 
protein receptors     [39-43] . The benzodiazepine scaffold, which 
is probably the best known privileged platform, has also 
produced farnesyl transferase inhibitors, reverse transcriptase 
inhibitors and ligands for the HIV-1 Tat protein     [44] , in 
addition to leads for GPCRs and ion channels. This use 
in targeting peptide receptors is rationalized by the ability of 
benzodiazepines to mimic the entire set of classical  β -turns 
in its ability to orient four side chains (Ripka  et al.      [24] , 
Hata  et al.      [25] ). 

 Monosaccharides provide an excellent platform to tailor 
molecular diversity by appending desired substituents at 
selected positions around the sugar scaffold ( Figure 1  ( 2 )). 
It was Hirschmann  et al.      [45,46] , who conduced the 
pioneering work and demonstrated the use of  β -D-glucose as 
a scaffold in the synthesis of somatotropin release-inhibiting 
factor peptidomimetics targeting somatostatin receptors. 
Three residues, Phe-Trp-Lys, contain the necessary functional 
information, but it is the relative positioning of these side 
chains that determine the affinity and selectivity for one 
or more of the five subtypes of somatostatin receptors. 
Substituents mimicking these amino acid side chains were 
positioned on a  β -D-glucose scaffold in a way that ensure 
the distances between the pharmacophoric groups were 
similar to those of somatostatin. Hirschmann  et al.      [47]  
later showed that compounds with modulated receptor 
subtype affinity are obtained by altering stereochemical 
centers in the scaffold. D-Glucose, L-glucose and L-mannose 
structural isomers were synthesized and displayed different 
subtype selectivity for somatostatin receptors. Kessler and 
co-workers     [48]  also employed the carbohydrate scaffold to 
develop ligands for the integrin family. Starting from identi-
fying a bioactive cyclic peptide and NMR determination of 
bioactive peptide conformations, molecular modeling was used 

to design a small set of mimetics based on  β -D-mannose. 
This led to the identification of  α  4  β  1 -selective integrin 
antagonists. Carbohydrate-like scaffolds are being used 
increasing in drug design: scaffolds, such as tetrahydrofuran 
rings from D-mannitol     [49] , artificial amino pyranose 
rings     [50]  and the chemically more challenging natural 
glycosides, such as  β -mannoside, have been explored 
(see recent reviews     [51-55] ). 

 Numerous additional non-peptidyl systems have been 
designed to mimic different types of reverse-turns. Of parti-
cular interest has been the replacement of a dipeptide motif 
in a given bioactive peptide with a constrained or rigidified 
counterpart ( Figure 1  ( 3 )). Freidinger  et al.      [56]  have prepared 
an analog of luteinizing hormone-releasing hormone 
containing a  γ -lactam as a conformational constraint. The 
analog was more active as a luteinizing hormone-releasing 
hormone agonist than the parent hormone and provided 
evidence for a bioactive conformation containing a  β -turn. 
The attachment of one or more rings to the basic Freidinger 
lactam structure was also possible. Fused lactam     [57-61] , 
spirolactam bicyclic     [62]  and tricyclic     [63]  systems were all 
examples that partially constrained the four backbone 
torsion angles of residues  i  + 1 and  i  + 2 and enhance 
reverse-turn propensity. By its very nature, such a motif 
could also encompass heteroatom analogs, in which carbon 
is replaced by sulfur, oxygen or nitrogen, at different 
synthetically attainable sites. The presence of functional 
groups as pendant substituents on the lactam ring system or 
its heteroatom congeners also provides opportunities for 
additional diversification.  

  2.2   Conformationally constrained peptides 
for reverse-turn mimicry 
 Conformational and topographical restrictions are particularly 
suited as manipulation for reverse-turn mimicry towards 
an increase of receptor selectivity, metabolic stability and the 
development of highly potent agonists or antagonists. One 
straightforward approach for peptide modification is to 
introduce a covalent linkage between residues  i  and  i  + 3, 
such as head-to-tail cyclization, which retaining the reverse-
turn conformation. Cyclic peptides form a large class of 
naturally occurring or synthetic compounds with a variety 
of biologic activities, such as hormones, antibiotics, ion-
transport regulators, toxins for example. They have been 
reported to bind multiple, unrelated classes of receptors with 
high affinity. Thus, cyclic peptides are considered to be 
privileged structures capable of providing useful ligands 
for more than one receptor, due to their high content of 
reverse-turn motifs. Another approach is to incorporate 
heterochiral dipeptides as residues  i  + 1 and  i  + 2. Nearly all 
biologic polymers are homochiral: all amino acids coded 
and incorporated by protein synthesis are left-handed; 
whereas all sugars in DNA/RNA and in metabolic pathways, 
are right-handed. It is the homochirality of naturally 
occurring amino acids that allows proteins to adopt 
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regular conformations, such as the  α -helix and the  β -sheet. 
The incorporation of heterochiral (D,L-alternating) 
dipeptides into a peptide chain abruptly changes the 
direction of the peptide. For example, Marshall and 
co-workers     [64,65]  suggested that D-Pro-L-Pro, L-Pro-D-Pro, 
D-Pro-L-Pip, L-Pro-D-Pip, D-Pro-L-NMe-AA and 
L-Pro-D-NMe-AA (where AA: amino acid other than Gly; 
Pip: pipecolic amino acid; NMe:  N -methylation) offer 
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   Figure 1    . Privileged scaffolds for reverse-turn recognition: benzodiazepines ( 1 ), sugars ( 2 ), lactams ( 3 ), cyclopentapeptides 
with heterochiral dipeptide segments ( 4 ), cyclotetraprolines with chimeric amino acids ( 5 ), metal complexes of linear 
peptides ( 6 ), metal ion-induced distinctive array of structures ( 7 ) and metal complexes of chiral azacrowns ( 8 ).     

1

5

relatively rigid scaffolds on which to orient side chains for 
interactions with receptors that recognize reverse-turn 
structures. Similarly, Gellman and co-workers     [66,67]  described 
that the  β -amino acid heterochiral dinipecotic acid segments, 
R-Nip-S-Nip and S-Nip-R-Nip (where Nip: nipecotic acid), 
could also promote reverse-turn formation. Smith  et al.      [68]  
also demonstrated that heterochiral pyrrolinones preferentially 
adopt a turn structure. 
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 Kessler  et al.      [69]  first established the concept of 
‘spatial screening’ ( Figure 1  ( 4 )), whereby small libraries of 
cyclic heterochiral penta- and hexapeptides as conforma-
tional scaffolds for probing receptor recognition, where a 
recognition motif (such as Arg-Gly-Ser or Leu-Asp-Thr 
tripeptide segments for integrin receptors) were systemati-
cally shifted around cyclic peptide–backbone structures 
containing different chiralities to sample different three-
dimensional presentations of pharmacophoric side chain 
groups, ultimately yielding compounds with nanomolar 
affinities and high selectivity     [70-73] . The Kessler group in 
collaboration with Merck KgaA has used the results from 
the ‘spatial screening’ with constrained cyclic peptides to 
guide the development of selective nanomolar non-peptide 
molecule inhibitors for  α  V  β  3 ,  α  V  β  5  and  α  V  β  6  integrins     [73] . 
One peptidic  α  V  β  3  inhibitor, c[RazaGDf(NMe)V], was 
reported in Phase II clinical studies and formed the basis the 
for design of nanomolar non-peptidic clinical candidates     [74] . 
A similar overall philosophy was employed by 
Fujii  et al.      [75]  to discover potent antagonists of C-X-C 
motif receptor 4, the GPCR co-receptor that interacts 
with the complex of gp120 and CD4, that blocked HIV 
infectivity. Porcelli  et al.      [76]  also used this approach to 
discover a novel substance P antagonist. However, earlier 
theoretical and experimental studies     [77]  have demonstrated 
a considerable degree of conformational averaging in 
NMR studies of cyclopentapeptides advocated as receptor 
probes. This has stimulated Che and Marshall     [78]  to examine 
cyclotetrapeptides (CTPs), the minimalist reverse-turn 
mimetic, based on heterochiral dipeptides of chimeric amino 
acids to be used as conformational templates, for instance, 
c[D-Pro-L-Pro-D-Pro-L-Pro] ( Figure 1  ( 5 )), as synthetic 
routes to chimeric prolines containing 2-, 3-, 4- or 5-position 
substituents on proline are abundant. The presence of four 
functionalized and stereochemically controlled centers on 
each proline ring offers chemists ample opportunity to 
custom design molecules to fit a pharmacophoric model; 
libraries of such CTPs comprised of chimeric prolines would 
lead to rapid identification of geometrical requirements from 
compounds found active in library screening. Theoretical 
studies     [78]  indicated that most reverse-turn motifs seen in 
proteins could be mimicked effectively with a subset of 
CTP scaffolds.  

  2.3   Use of metals for reverse-turn mimicry 
 Efforts have extended conventional cyclization by disulfide, 
amide or carbon–carbon bonds through the use of metals 
and the introduction of specific metal-binding sites in the 
peptide itself. The use of a metal template as a strategy for 
controlling the conformation of a short peptide to mimic a 
reverse-turn motif was clearly enunciated and demonstrated 
by Tian and Bartlett     [79] . Peptide complexes of the Cu(II) 
ion ( Figure 1  ( 6 )) were used to adopt the appropriate 
conformation to mimic the Trp-Arg-Tyr segment of 
tendamistat, a protein inhibitor of  α -amylase. The metal 

complexes oriented the triad around a  β -turn in a fashion 
similar to tendamistat, for which these residues are central 
to binding interactions with  α -amylase. These mimetics 
were based on the structure of the complex of Cu(II) with 
pentaglycine where the N-terminal amino group and the next 
three amide nitrogens showed square-planar coordination to 
the metal. Three tetrapeptides containing Trp, Arg and 
Tyr residues showed  ∼  100-fold increases in inhibition in 
the presence of Cu(II). One complicating factor in this 
study was the dissociation of copper from the complex with 
its inherent amylase–inhibitor activity. It is most desirable 
that any metal complex has stability in the relevant biologic 
milieu to reduce ambiguity in its mechanism of action and 
to reduce possible toxicity. 

 Shi and Sharma     [80]  have developed a combinatorial 
approach entitled metal-ion induced distinctive array of 
structures in which the amide nitrogens of the N-terminal 
two amide acids of a peptide preceding a cysteine residue 
react with a rhenium reagent leading to formation of a 
stable rhenium complex ( Figure 1  ( 7 )). This leads to stable 
complexes with similar geometry to the Cu(II) complexes 
of Tian and Bartlett. A selective inhibitor of human 
neutrophil elastase     [80]  and a highly selective agonist of 
the melanocortin-1 receptor     [81]  were discovered with the 
metal-ion induced distinctive array of structures approach. 

 Marshall and co-workers     [82-85]  explored the use of metal 
complexes of chiral azacrowns (MACs) derived from amino 
acid synthons as a strategy for controlling the conformation 
and fixing chiral side chains in orientations comparable with 
those of reverse turns ( Figure 1  ( 8 )). Reduction of the amide 
bonds to secondary amines of a cyclic peptide precursor 
leads to a flexible azacrown and the flexibility can be limited 
by complexation with a metal to fix the side chain 
orientations into a manageable set     [86] . Proof of concept of 
MACs providing a novel approach to peptidomimetics 
came from two examples, where the receptor-bound 
conformations had been previously determined by X-ray 
crystallography of peptide–receptor complexes     [83] . One 
MAC was designed to mimic the proposed receptor-bound 
conformation of the Arg-Gly-Asp motif to the cyclic penta-
peptide, c[RGDfMeV], complexed with the  α  V  β  3  integrin 
receptor. And the other MAC was designed to mimic the 
 α -amylase-bound conformation of a Trp-Arg-Tyr  β -turn 
motif from tendamistat. The metal center is buried in 
the middle of a MAC complex, acting like glue to keep the 
pharmacophoric groups correctly oriented in their desired 
directions. One must design a complex that affords the 
proper geometrical orientations, but it is essential that 
the metal be bound tightly so that no redox-active metals 
are allowed to dissociate from the complex  in vivo  to 
complicate bioassays with potentially toxic side effects. 
Riley and co-workers     [87-93]  have demonstrated that MACs 
possessed catalytic superoxide dismutase activity in a wide 
range of MAC analogs when complexed with manganese. 
These metal complexes showed reasonable thermodynamic 
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stabilities and excellent kinetic stability with the metal 
complexes completely intact under physiologic conditions 
and no metal dissociation for many hours even in the 
presence of ethylene-diamine-tetra-acetic acid. Clinical 
candidates for a variety of inflammation conditions, as 
well as ischemia–reperfusion injury, refractory hypotension 
and HIV-1 infection emerged from this class of metal 
complexes  [90,94-96] . The fact that one MAC, M40403, 
has successfully completed Phase I and II clinical trials 
demonstrated that this class of metal complexes is relatively 
safe and possesses suitable pharmacokinetic properties 
(e.g., log  P ) for use as pharmacologic probes and potential 
therapeutic agents. 

 Several other groups have also used amino acid side chains 
(e.g., cysteine, histidine, lysine, aspartic acid) or chemically 
modified backbone to participate in specific metal ligation. 
A few examples serve to further illustrate this approach. 
Tamamura  et al.      [97-99]  have shown that three peptides with 
significantly different cyclic constraints, including a Zn(II) 
complex, bind to C-X-C motif receptor 4. T22, a precursor 
of T134, has four Cys residues making two disulfide bonds 
and a  β -hairpin conformation in solution. T22 (Zn), a 
derivative of T22 in which the four sulfurs of the Cys 
residues are bonded to Zn(II), has 4-fold the activity of T22. 
T134 has a characteristic turn motif (D-amino acid-Pro) 
and a disulfide bridge constraint to impose a  β -hairpin 
structure in solution. The Marshall group     [100-103]  developed 
synthetic routes to modify the amide backbone to a 
hydroxymate, or phosphinic acid (Ye  et al.  Biopolymers, 
in press), group to provide multiple metal-binding sites. 
Similarly, Akiyama  et al.      [104]  had previously replaced the 
amide bond with a hydroxymate in enkephalin to generate 
a metal-binding site. These peptides mimic the naturally 
occurring hydroxymate-containing siderophores involved 
in iron transport. Combinations of these approaches 
and complexation of the resulting compounds with 
different metals should provide useful probes of 
conformational preorganization with novel constraints for 
reverse-turn recognition.   

  3.   Helix recognition and mimicry 

 The helix is a common secondary structural motif in 
proteins, a crucial recognition motif in many protein–protein 
and protein–nucleic acid interactions. Helices are found 
in proteins predominantly as  α -helices, but occasionally as 
3 10 -helices. 3 10 -Helices have also been implicated as 
recognition motifs in a number of protein–protein 
complexes     [105,106] . In isolated helices, transition between 
the  α - and 3 10 -helical forms is facile with an estimated 
energy barrier of 3 – 4 kcal/mole     [107] . This is primarily 
due to the fact that helix geometry of the peptide backbone 
allows a single amino group to makes two weaker bifurcated 
H-bonds in the transition state between the  α - and 
3 10 -helices. The lowness of this barrier suggests that small 

peptide helices can be easily induced to bind in either 
helical conformation by interaction with their receptors. 
So far, helical peptidomimetics were designed primarily to 
imitate  α -helical recognition functions     [108] . 

  3.1   Nonpeptidyl  a -helix mimetics 
 As the critical surface for  α -helical recognition often involves 
the side chains of residues  i ,  i  + 3 and/or  i  + 4 and  i  + 7, 
along one face of the  α -helix, one can design appropriate 
scaffolds with limited conformations to orient attached 
functional groups that closely resemble the surface of 
 α -helices. There are 3.6 residues per turn of an  α -helix, 
with a rise of 1.5  Å  per residue. The characteristic axial rise 
between these four key residues is 4.5 or 6.0  Å , respectively. 
Looking down the helical axis, residues are projected at 
-60 °  and 40 °  for  i   →   i  + 3 and  i   →   i  + 4 interactions, 
respectively. Hamilton and co-workerss     [109-113]  described 
a terphenyl scaffold ( Figure 2  ( 9 )) that can reasonably 
imitate side chain orientations seen in  α -helices in which 
the 3,2 ′ ,2′′-substituents on the phenyl rings present 
functionalities in a spatial relationship that mimic the  i , 
 i  + 3 or  i  + 4 and  i  + 7 residues on an  α -helix. Comparing 
the terphenyl scaffold and the ideal  α -helical structure, 
when the terphenyl is in a staggered conformation, the three 
substituents project from the terphenyl core with similar 
angular relationships and 5 – 30% shorter distances in the 
characteristic rise corresponding to  i   →   i  + 3 and  i   →   i  + 4 
interactions in a native  α -helix. Proof of concept for helix 
mimetics in protein–protein recognition came from success-
fully disrupting the interaction between calmodulin and an 
 α -helical domain of smooth muscle light-chain kinase     [109] ; 
inhibiting the assembly of HIV-1 gp41 and, thereby, reducing 
levels of viral entry into host cells     [110] ; preventing the 
interaction between the proapoptotic protein Bak and 
the antiapoptotic protein Bcl-xL     [111,112] ; and blocking the 
complex formation of the tumor-suppressor p53 with the 
oncoprotein human double minute (HDM2)     [113] . Based 
on theoretical arguments, Jacoby     [114]  proposed that 
2,6,3 ′ ,5 ′ -substituted biphenyl derivatives are protein  α -helix 
mimetics superimposing the side chains of the residues  i , 
 i  + 1,  i  + 3 and  i  + 4, better than other templates with 
a chiral axis, such as allene, alkylidene cycloalkane and 
spirane. Similarly, scaffolds based on terephthalamide     [115] , 
piperazinyl-pyrimidone     [116] , benzoylurea     [117]  and pyridazine 
heterocycle     [118]  have also been described as nonpeptidyl 
 α -helix mimetics. 

 However, the terphenyl scaffold is not rigid; for example, 
it adopts both right- and left-handed twists. There are 
16 energetically almost equal conformers, only two of 
which can mimic either of the desired  α -helical side chain 
orientations. Thus, the terphenyl scaffold is not optimally 
preorganized in terms of  α -helical mimicry, due to its 
conformational heterogeneity. Based on molecular modeling, 
Che  et al.      [108]  described novel  α -helix mimetics that are 
more effective than the terphenyl at constraining the 
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aryl–aryl torsion angles to those associated with structures 
suitable for mimicking the  α -helical twist for side chain 
orientation and for superimposing those four key residues 
when compared with the  α - β  side chain vectors of the regular 
 α -helix with improved root mean square deviation values. 
As an example of one alternative scaffold, the terpyridyl one 
is able to limit side chain orientation to a greater extent 
than does the terphenyls. The computational study also 

indicated that rotamer distributions around the C  α  -C  β   
bonds of these helix mimetics are similar to those of 
 α -helices, except that the rotamer distributions show a 
60 °  shift compared with those of  α -helices when the mimetic 
axis is superimposed on the helix axis. This change in 
rotamer orientation complicates mimicry of the helix surface 
as it implies that one cannot simply transfer side chains 
from the helix to the aryl scaffold. 

   Figure 2    . Privileged scaffolds for  a -helical recognition: terphenyls ( 9 ), trispyridylamides ( 10 ),  a , a -dialkyl amino acids ( 11 ), 
crosslinked interfacial peptides ( 12 ), H-bond surrogates ( 13 ), end-capping templates ( 14 ),  b  3 -peptides ( 15 ) and peptoids ( 16 ).     
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 The low solubility of the terphenyl scaffold has prompted 
the Hamilton group     [119]  to develop another scaffold, 
trispyridylamide ( Figure 2  ( 10 )), for  α -helix mimicry. The 
template adopts a preferred conformation in which all 
three functional groups are projected on the same face of 
the scaffold. This preorganization is accomplished through a 
stabilizing bifurcated H-bonding network, as well as through 
the minimization of alternative conformations. The charac-
teristic axial rise of 5.7  Å  is close to that of the  i   →   i  + 4 
interaction in an  α -helix. However, the alkoxy side chains 
are rotated 45 °  out of the plane of the carboxamide 
backbone. This may partially explain why trispyridylamide 
derivatives only had affinity in the low µmolar range for 
Bcl-xL, compared with a binding affinity of 114 nM for 
a terphenyl compound and 300 nM for the 16 residue 
BH3-domain peptide from the protein Bak.  

  3.2   Conformationally constrained  a -helix motifs 
 A short synthetic peptide corresponding to a helical 
recognition motif does not typically fold stably in isolation 
and is usually flexible and conformationally disordered in 
solution. Such flexible peptides present side chains in a 
plethora of relative orientations increasing undesirable 
interactions at multiple recognition sites. This inherent 
flexibility also limits binding affinity when these peptides 
bind to their targeted receptors in a unique conformation, 
due to a more significant loss of entropy. Marshall and 
Bosshard     [120]  predicted in 1972 that  α , α -dialkyl amino 
acids ( Figure 2  ( 11 )), such as  α -aminoisobutyric acid (Aib or 
 α -methylalanine, MeA), would severely restrict the  φ  and 
 ψ  torsion angles of that residue to those associated with 
right- or left-handed helices (both  α - and 3 10 -helices). 
Subsequent experimental validation of that prediction is 
abundant     [121] . An example where  α , α -dialkyl amino acids 
were used to induce an  α -helix of the peptide in water 
that enhanced binding involves the p53/HDM2 helix 
recognition: IC 50  of 5 nM for an Aib-containing peptide 
and 8.7 µM for the native  α -helical peptide     [122] . 

 Alternatively, the helical structure can be stabilized 
through the incorporation of covalent or noncovalent 
linkages between side chains of two residues separated 
in sequence, but spatially close in a helix, such as residues 
 i  and  i  + 4 of an  α -helix ( Figure 2  ( 12 )). Examples of 
chemical linkages shown to enhance helical propensity 
include: salt bridges     [123] , hydrophobic interactions     [124,125] , 
aromatic–charge     [126]  or aromatic–sulfur     [127]  interactions, 
disulfide bonds     [128,129] , lactam bridges     [130-132] , hydrocarbon 
staplings     [133,134] , diaminoalkanes     [135] , acetylenes     [136]  and 
metal ligation between natural     [137,138]  and unnatural amino 
acids     [139,140] . These crosslinked interfacial peptides have been 
demonstrated to yield a marked enhancement of peptide 
helicity, stability and  in vitro  and  in vivo  biologic activity. 
For example, the interaction between the proapoptotic 
protein BID and the antiapoptotic protein Bcl-xL was 
disrupted by a hydrocarbon-stapled helix combined with 

 α -methyl substituents on the two linked amino acids     [141] . 
This conformationally constrained peptide segment, derived 
from the helical BH3 domain of BID, was found to protease 
resistant, cell-permeable and bound to Bcl-xL with a 6-fold 
higher affinity than the unconstrained helix. Cellular uptake 
was observed and apoptosis was activated within cells after 
treatment with the stapled helix. In addition, the stapled 
helix effectively inhibited the growth of human leukemia 
xenografts  in vivo . 

 Helical peptides are stabilized by extensive but weak 
intrachain H-bonds; design of covalent surrogates of 
intrachain H-bonds ( Figure 2  ( 13 )) reinforces the helical 
structure     [142,143] . Such artificial helical peptides are attractive 
scaffolds for molecular recognition because the backbone 
H-bond surrogate neither blocks solvent-exposed recognition 
surface nor removes important side chain functionalities. 
For example, one peptide analog of a human papillomavirus 
peptide segment was conformationally restricted to an 
 α -helical structure using a hydrazone link and was shown to 
have a very strong reaction with sera from women having 
invasive cervical carcinoma     [144] . Though the main body of 
a peptide helix is stabilized by intrachain H-bonds, free 
amino groups at the N-terminus and carboxyl groups at the 
C-terminus of the helix do not participate in such internal 
peptide H-bonding. Thus, preorganized helix-nucleating 
templates ( Figure 2  ( 14 ))     [145,146]  have been developed in 
which the orientation of the first 4 amino groups or the last 
4 carboxyl groups were fixed in a rigid structure to template 
helix formation and prevent fraying of either end.  

  3.3   Helical foldamers 
 Foldamers are sequence-specific oligomers, akin to peptides 
and oligonucleotides that fold into well-defined three-
dimensional structures. They offer templates for presenting 
complex array of functional groups in virtually unlimited 
geometrical patterns and, thereby, providing attractive 
opportunities for the design of molecules that bind in a 
sequence- and structural-specific manner to protein 
surfaces     [147] . A number of foldamers with a strong tendency 
to adopt helical structures has been employed to interfere 
with protein–protein interactions. Many of these are 
structural variants of peptides, but are essentially stable to 
most proteases. One such family of foldamers is the 
poly- N -substituted glycines or ‘peptoids’ ( Figure 2  ( 15 )) on 
which the amino acid side chains are appended to amide 
nitrogens rather than to the  α -carbons     [148] . Despite the 
achirality of the  N -substituted glycines backbone and its loss 
of amide H-bonds, peptoids containing  α -chiral, sterically 
bulky side chains are able to adopt stable, chiral helices with 
 cis -amide bonds. The periodicity of the peptoids helix is 
3 residues per turn, with a pitch of 6  Å . Appella and 
co-workers     [149]  explored the structural requirements of 
peptoids optimized for inhibition of p53–HDM2 
interactions. The other family of foldamers is  β -peptides 
( Figure 2  ( 16 )) that differ from  α -peptides by one additional 
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backbone carbon atom between the amino and carboxyl 
groups     [150,151] .  β -peptides composed of  β  3 -L-amino acids 
are able to form left-handed 14-helices characterized by a 
periodicity of 3.25 residues per turn with a pitch of 4.7  Å  
and H-bonds between the backbone amide proton of residue 
 i  and the carbonyl oxygen of residue  i  + 2. The ability to 
form stable helices makes  β -peptides good candidates for 
mimicry of structures and functions of  α -helical recognition 
motifs. Schepartz and co-workers have designed adaptable 
 β  3 -peptide scaffolds with enhanced 14-helix structure by 
neutralization of the helix macrodipole     [152]  that inhibited 
the p53–MDM2 interaction     [153] , as well as gp41-mediated 
HIV-1 fusion     [154] . Alternative helical structures of regular 
and hybrid peptides consisting of homologous amino acids, 
such as  β -,  γ - and  δ -amino acids, have been implicated as 
potential inhibitors to modulate  α -helix recognition     [155-158] .   

  4.   Expert opinion 

 One major drug discovery paradigm often begins with a 
known chemical starting point that has a desirable biologic 
activity with therapeutic relevance, such as a natural substrate 
or regulator; such information is not readily available if the 

object is to disrupt a protein–protein interaction. However, 
if the protein–protein interface consists of short continuous 
recognition motifs, such as an  α -helix or a reverse turn, 
privileged scaffolds targeting these binding sites may serve as 
lead compounds for subsequent optimization. In addition, 
the concept of privileged scaffold targeting common protein 
recognition motifs is highly attractive because the rational 
design of new leads for many protein–protein interactions 
has been limited by the lack of detailed structural informa-
tion for a particular targets. Privileged scaffolds can provide 
medicinal chemists with common, non-peptidic, bioavailable 
substructures as suitable starting points in parallel synthesis. 
Ultimately, a single, large combinatorial library of privileged 
structures might provide ligands for a whole series of 
protein targets. 

 Although research to discover small-molecule drugs that 
target protein–protein interactions is still at an early stage, 
accelerated activity in this area will occur as compounds 
move through clinical trials and the science and technology 
base continues to develop. The prospective of developing 
drugs that target biomolecules that are relatively well 
validated in terms of biologic function and role in disease 
is important in driving advances in this field. 
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